

Predicting blood glucose levels using

machine learning techniques with

metaheuristic optimisers.

Matteo Rapa

Supervisor: Dr Michel Camilleri

Department of Computer Information Systems

Faculty of ICT

University of Malta

October 2020

Submitted in partial fulfilment of the requirements for the degree of BSc. in Information

Technology (Software Development)

i

Contents

List of Figures .. iv

List of Tables .. vi

List of Abbreviations .. vii

Abstract ... ix

Acknowledgments ... x

Chapter 1 - Introduction .. 1

1.1 Background and Focus .. 1

1.1.1 Diabetes Mellitus ... 1

1.1.2 Blood Glucose Level Control ... 2

1.1.3 High Incidence ... 2

1.1.4 Aim of this study ... 3

Chapter 2 - Background ... 4

2.1 Time Series Forecasting using classical methods... 4

2.1.1 Univariate Time Series .. 4

2.1.2 Multivariate Time Series .. 5

2.2 Machine Learning approaches for Time Series Forecasting 5

2.2.1 Recurrent Neural Networks .. 5

2.2.2 Convolutional Neural Network .. 6

2.2.3 XGBoost .. 6

2.3 Optimisers ... 7

2.3.1 Hyperparameter Optimisation .. 7

2.3.2 Parameter Control ... 7

ii

2.3.3 Gradient Descent ... 8

2.3.4 Metaheuristic Optimisers ... 9

2.3.5 Particle Swarm Optimisation ... 10

2.3.6 Evolutionary Algorithms ... 10

2.4 Distributed Systems ... 12

2.4.1 The MapReduce Model .. 12

2.4.2 Distributed Machine Learning .. 13

Chapter 3 - Literature Review .. 14

3.1 Machine learning implementations of blood glucose level prediction 14

3.2 The OhioT1DM Dataset ... 18

3.3 Metaheuristic optimisation approaches for time series forecasting 19

3.4 Comparison of related works ... 19

3.5 Summary of related works .. 20

Chapter 4 - Motivation and Aims. ... 22

4.1 Research Questions .. 22

4.2 Aims and Objectives .. 22

Chapter 5 - Methodology .. 24

5.1 Software and Tools ... 24

5.2 Hardware and Distributed Infrastructure Using Apache Spark 25

5.3 The dataset .. 26

5.3.1 OhioT1DM Dataset Columns .. 27

5.3.2 Using CGM only .. 28

5.3.3 Interpolation for missing data in time series ... 29

5.3.4 Resampling the Time Series ... 29

5.3.5 Batching the data ... 29

iii

5.4 Hyperparameter Search Space ... 29

5.5 Machine Learning Models .. 30

5.5.1 Multi-Layer Perceptron .. 30

5.5.2 Recurrent Neural Network with LSTM ... 33

5.5.3 Extreme Gradient Boosting Trees ... 34

5.6 The Genetic Algorithm Configuration .. 35

5.6.1 Initial Population Generation .. 35

5.6.2 Crossover Method ... 35

5.6.3 Mutation ... 35

5.7 Particle Swarm Optimiser Algorithm and Configuration 35

Chapter 6 - Experimentation ... 37

6.1 Planned Experiments ... 37

6.1.1 Subsets of the OhioT1DM dataset ... 37

6.1.2 Variations of the Patient ... 37

6.2 Root Square Mean Error .. 39

6.3 Parkes Error Grid Analysis ... 39

Evaluation strategy .. 40

Chapter 7 - Results and Observations ... 41

7.1 The Results .. 41

7.2 Evaluation of Results ... 4

Chapter 8 - Limitations, Future Work and Conclusions ... 6

8.1 Limitations of the Study .. 6

8.2 Future Work .. 6

8.3 Conclusion ... 6

Bibliography .. 8

iv

List of Figures

Figure 2.1 Time series model equations taken from [7]…………………………………….4

Figure 2.2.1 Taken from Deepmind's WaveNet paper for a dilated CNN [12]. 6

Figure 2.3.1 Graph showing gradient descent problems. Taken from Hands-on Machine

Learning [9]. .. 8

Figure 5.2.1 Architecture diagram of Apache Spark running on Amazon Web Services,

where Amazon EMR is used to create, configure, and manage the cluster made up of

accelerated EC2 instances. .. 26

Figure 5.5.1.1 Multi-layer perceptron with 12 glucose inputs mapping into a single

glucose value. The hyperparameter such as the inputs, number of hidden units

(neurons), and the number of hidden layers may be tuned to provide better

performance. ... 31

Figure 5.5.2 Line chart with five random combinations of hyperparameters for the MLP

model. It indicated little improvement after 250 epochs on average.............................. 32

Figure 5.5.3 Loss vs. Epoch chart for 5 RNN runs. Each of the runs had a random

hyperparameter combination using the bounds defined. Run 1 required more epochs

to achieve the same loss as the other four runs, this may be due to it having the smallest

learning rate hyperparameter. This chart gives an indication that 400 epochs is

sufficient to provide lesser loss on the RNN model. ... 33

Figure 5.7.1 Pseudo code of the PSO algorithm. Reproduced from [21]. 36

Figure 7.1.1 Line chart showing the average best fitness for both the genetic algorithm

(blue), and the random search optimiser (red) for patient 540 using the RNN with

PH=30min. ... 42

Figure 7.1.2 Chart depicting Best So Far Per Run over the generations for patient 540

using the RNN with PH=30min. .. 42

v

Figure 7.1.3 Line chart showing the average best so far for each of the hyperparameter

optimisers over the generations. .. 43

Figure 7.1.4 Line chart showing the average best for each of the hyperparameter

optimisers per generation. .. 1

Figure 7.1.5 Line chart showing Best So Far per run for each of the hyperparameter

optimisers. In this chart the random search performs similarly to the genetic algorithm,

with the third run of the GA showing significant improvement from the rest of the rest.

... 1

Figure 7.1.6 Line chart of average Best So Far over the generations, where the genetic

algorithm shows improvement after several generations. ... 2

Figure 7.1.7 Line chart showing average best RMSE (mg/dL) for the genetic algorithm

and random search for every generation. (Population size = 12) 3

Figure 7.1.8 Line chart showing the best so far RMSE (mg/dL) for the genetic algorithm

and random search for every generation. (Population size = 12) 3

Figure 7.1.9 Line chart showing the average best so far RMSE (mg/dL) for the genetic

algorithm and random search for every generation. (Population size = 12) 4

vi

List of Tables

Table 3.4.1 Comparison of prediction results of current literature using the ohioT1DM

dataset. ... 20

Table 5.3.1 Description of data columns used from the OhioT1DM dataset. Contains

both sensor time series and self-reported data. Reproduced from Marling et al. [35]. 27

Table 5.4.1 Hyperparameters common across all machine learners. 30

Table 6.1.1 OhioT1DM dataset patient differences. Reproduced from [35] 38

Table 6.1.2 List of experiments that were conducted in this study. 38

Table 6.3.1 Risk categories identified for the Parkes Error Grid. Adapted from [48]. .. 39

Table 7.1.1 Results of the first experiment, where the RNN was tuned using the genetic

algorithm and random search optimiser for 3 runs on patient 540 for PH=30. 1

Table 7.1.2 Results of the second experiment, where the RNN was tuned using the

genetic algorithm and random search optimiser for 3 runs on patient 563 for PH=30. . 1

Table 7.1.3 Results of the third experiment showing a comparison of predictive

performance of the XGBoost after hyperparameter optimisation using the Genetic

algorithm and Random search on the ohioT1DM dataset (CGM only) using patient 559

for PH=30min. *BSF=Best So Far, BF=Best Fitness, SD=Standard Deviation 2

vii

List of Abbreviations

Abbreviation Definition Pages

DM Diabetes mellitus 1

T1DM Type 1 diabetes 1

T2DM Type 2 diabetes 1

BG Blood glucose -

IDF International Diabetes Federation 2

RNN Recurrent neural network 5, 13-19

CNN Convolutional neural network 5-6, 16-17, 19

ANN Artificial neural network 7

PSO Particle swarm optimisation 9, 10

GA Genetic algorithm 10

SGD Stochastic gradient descent 8

AWS Amazon web services 12

BGP Blood glucose prediction 19

PH Prediction horizon 13-17, 19

Seq-2-Seq Sequence to sequence 17

GSR Galvin skin response 18

LSTM Long short-term memory 5, 13-19

viii

SVR Support vector regression 17

AR Auto regressive 4

VAR Vector auto regressive 5

GARCH Generalized autoregressive conditional

heteroskedasticity

5

ANN Artificial neural network 7

ARIMA Auto regressive Integrated Moving Average 4, 14, 20

DCNN Dilated convolutional neural network 15-16, 19

ML Machine learning 2-3, 6, 11-17,

20

MA Moving Average 4

RMSE Root mean square error 14-17, 19

PH Prediction horizon 13-17, 19

DRNN Dilated recurrent neural network 5, 19

ix

Abstract

Introduction: Persons with Type-1 diabetes need to continuously monitor their blood

glucose level to remain within a healthy range. Using machine learning techniques

researchers can predict blood glucose values with the benefit of providing the patient

with future blood glucose values with the aim of primitively taking action. The focus

of this study was to investigate the use of metaheuristic optimisers to strategically tune

the hyperparameter configuration of these machine learners in the context of blood

glucose prediction using the OhioT1DM dataset with the aim of improving the

predictive performance of the machine learners.

Research questions: i) What is the degree of improvement when using a metaheuristic

approach over a completely random search given the same search space? ii) How can

the computation be carried out in a shorter time, what are possible ways of distributing

the workload among several machines?

Methodology: A few machine learners namely the MLP, RNN and XGBoost were

implemented for the prediction of blood glucose level. Moreover, two metaheuristic

optimisers, the genetic algorithm and particle swarm optimisation, and random search

were used to perform hyperparameter optimisation. The experimentation was run

three times to obtain an average of the performance. Due to the increased computation

load in running multiple runs a Spark cluster running on EC2 instances was considered

to reduce the computation time.

Results & evaluation: The results obtained from the experimentation give an indication

that for the context of the ohioT1DM dataset and configurations set, the metaheuristic

optimisers consistently provide a slightly better predictive performance when given

enough iterations.

Conclusion: This study demonstrated that the use of metaheuristic optimisers in the

context of blood glucose prediction when using the OhioT1DM dataset can provide

improved results over random search. It is noted that using such techniques

significantly increased computational load.

x

Acknowledgments

 I would like to thank my supervisor Dr Michel Camilleri for his deep insights, constant

motivation, and patience during the development of this study.

INTRODUCTION

1

Chapter 1 - Introduction

The human body naturally keeps blood glucose levels within safe limits, but this is not

the case for persons with diabetes. This raises the need for blood glucose level control,

which involves regularly measuring blood glucose levels, and depending on the

identified level, the appropriate treatment is administered. Currently, glucose

measurement devices used by diabetic patients are considered invasive, hence the

prediction of blood glucose levels by employing machine learning techniques is of

interest to researchers. Various predictive algorithms are used to predict future blood

glucose levels using current blood glucose values, by making use of physiological time

series data obtained from wearable sensors. This study explores the machine learning

techniques used for such an algorithm-based approaches for blood glucose level

prediction, and investigates the application of hyperparameter optimisation

algorithms, which may further improve the accuracy of the predictive algorithms.

1.1 Background and Focus

1.1.1 Diabetes Mellitus

Diabetes Mellitus is described as “a syndrome of impaired carbohyrdate, fat, and

protein metabolism caused by either lack of insulin secretion or decreased sensitivity

of insulin” [1]. Diabetes has two main types, Type 1 diabetes (T1DM) which is caused

by a lack of insulin production by the Beta cells within the pancreas, and Type 2

diabetes (T2DM); caused by a buildup of resistance to the metabolic effects of insulin

[1]. The blood glucose (BG) concentration is generally between 80 and 90 mg/dL for a

fasting person each morning, and increases to 120 to 140 mg/dL during the first hour

or so after a meal for a normal person [1]. The homeostasis system that controls the

blood glucose returns the concentration back to normal ranges within 2-hours after the

last absorption of carbohydrates [1]. Blood glucose levels are controlled by two primary

INTRODUCTION

2

hormones, insulin, and glucagon, produced by the pancreas to keep blood glucose

concentration within the normal limits, each having opposite effects on the BG level.

1.1.2 Blood Glucose Level Control

Insulin; triggered by high blood glucose levels, lowers blood glucose concentration

back within normal ranges, by enhancing the transport of glucose from the blood to

body cells, converting excess glucose into fats, and stopping the breakdown of

glycogen in glucose [1]. Glucagon raises blood glucose concentration by targeting the

liver; the primary store of glycogen, to release glucose in the blood when triggered by

low blood glucose levels. The homeostasis system manages to keep the BG levels within

the normal range by using insulin and glucagon accordingly. Unfortunately people

suffering with diabetes cannot rely of this body function to keep a safe level of BG. This

leads either to high blood glucose levels, referred as hyperglycaemia or low blood sugar

levels referred as hypoglycaemia, both of which can have negative consequences on the

health of the body. Diabetics need a reliable and non-invasive way of monitoring their

blood glucose levels to avoid dangerous glycaemic events. Diabetic patients are

recommended to measure their BG level four times a day [2]. However, glucose meters;

an accepted method of measuring BG levels for diabetic patients, yields accurate results

but is considered invasive as the patient needs to puncture their finger for a blood

sample multiple times a day.

1.1.3 High Incidence

Diabetes is a global health problem, according to the International Diabetes Federation

(IDF), their 2019 Atlas report [3] shows that around 463 million people are currently

living with diabetes, amounting to 1 in 11 adults worldwide. The IDF projects that by

2030 more than 578 million people will be living with diabetes. Diabetic patients are at

higher risk of critical glycaemic events. These events can be mitigated through timely

intervention; however these preventive actions take time to act. Due to the

pervasiveness of diabetes, the use of machine learning (ML) techniques for predicting

blood glucose levels is an area of interest to researchers that attempt to provide the

patient a non-invasive way to forecast future blood glucose levels with confidence, to

INTRODUCTION

3

take action e.g., taking an insulin dose in time for it to act. Despite the great

advancements in recent years, the typical accuracy of such predictions does not yet fall

within clinically accepted parameters. Hence, further study is needed to improve the

accuracy of such predictions.

1.1.4 Aim of this study

A proposed method for improving the accuracy of predictive algorithms when

predicting blood glucose levels, is by using metaheuristic optimisers to find better

hyperparameters. The aim of this study is to investigate the effectiveness of

metaheuristic optimisers when using machine learning approaches to forecast the

blood glucose levels, when using physiological data obtained from sensors.

Additionally, to explore whether distributed computing techniques could help in

reducing the envisaged training time required when using metaheuristic optimisers.

The focus of this study includes the experimentation of different machine learning

approaches with metaheuristic techniques for hyperparameter optimisation. In chapter

2 the background and concepts relating to the study of blood glucose prediction is

discussed. In chapter 3 current literature pertaining to BGP using machine learning

approaches is reviewed. In chapter 4 the research questions and objectives of this study

are posed. In chapter 5 the implementation of the machine learners and metaheuristic

optimisers is discussed. In chapter 6 a detailed outline of the experiments performed

and metrics for comparison is given. In chapter 7 the results of the experimentation are

observed. Finally in chapter 8 the conclusion of the study, along limitations and future

works is discussed.

BACKGROUND

4

Chapter 2 - Background

This chapter will explore the main concepts relating to the study of data-driven blood

glucose level prediction, using ML approaches to extract hidden dependencies from

available data. This chapter discusses the forecasting of blood glucose levels using

classical time series methods, and novel ML models, with further discussion on

hyperparameter optimisers, with a focus on metaheuristics methods, and training of

such models using distributed systems.

2.1 Time Series Forecasting using classical methods.

A time series data is a collection of observations measured sequentially through time.

By using historical data of the past time-series, it is possible to forecast values into the

future [4]. Time series forecasting has many applications such as forecasting sales,

weather prediction, and load forecasting. Additional capabilities of time series analysis

include anomaly detection; analysing historical data with current values, and data

imputation; predicting the past to fill missing data within a time series. When

evaluating a time series using a time plot, one can observe patterns such as trends,

seasonality, and noise. The following sections will investigate statistical methods of

forecasting for univariate and multivariate time series [5].

2.1.1 Univariate Time Series

A univariate time series represents a variable and it changes from one time step to the

next. The autoregressive model (AR) forecasts future values based on the past

behaviour to find the correlation between one time interval and the next (see equation

1). The moving average (MA) model does not rely on past values for the forecasting of

future values but rather on past forecast errors (as shown in equation 2). A better way

of modelling a univariate time series is using the ARIMA model by Box and Jenkins,

where it combines the AR model and the MA model (as shown in equation 3) [6].

BACKGROUND

5

yt= c + ϕ1yt−1+ ϕ2yt−2 + ⋯ + ϕpyt−p + εt (1)

yt = c + εt + θ1εt−1 + θ2εt−2 + ⋯ + θqεt−q (2)

where εt is white noise

y′t = c + ϕ1y′t−1 + ⋯ + ϕpy′t−p + θ1εt−1 + ⋯ + θqεt−q + εt, (3)

where y’t is the differenced series.

Equation 2.1.1 Time series model equations. Reproduced from [7].

2.1.2 Multivariate Time Series

A multivariate time series can represent multiple variables at a time point over the

change in time. Multiple methods for forecasting such time series have been proposed

such as the vector AR model (VAR), and the generalized autoregressive conditional

heteroskedasticity (GARCH) [8].

2.2 Machine Learning approaches for Time Series Forecasting

This section introduces machine learning concepts that may be applied for the

prediction of blood glucose levels.

2.2.1 Recurrent Neural Networks

Recurrent neural networks (RNN) take a series of input, and recurrently use the output

of the previous data input, to give the output of the current input. An RNN is capable

of remembering what it learnt from the previous inputs by using an internal state. [9].

During training, the weights are shared and are updated for every time step in the

sequence using the state. A shortcoming of RNN is that it could only remember time

steps from previous iterations, as the distance grows it loses long term context. By using

a long short term memory (LSTM) cell, the RNN is able to remember long term

dependencies by using gates to change the internal cell state [10]. The gates help to

decide which parts of the state should be remembered or forgotten.. A dilated RNN

BACKGROUND

6

(DRNN) structure is another method that may capture long term dependencies within

time series data [11].

2.2.2 Convolutional Neural Network

A convolutional neural networks (CNN) uses convolutional layers for extracting high

level features on which classification may be performed using a connected layer [9]. A

CNN commonly implemented for image recognition tasks because of the ability to

extract features from an image, while still preserving spatial information, and also

reducing dimensionality by using pooling layers; to reduce the size without losing key

information [9]. Additionally, the set of parameter weights are reusable for every

convolution. A CNN can be adapted for time series data by using a 1-D layer instead,

and stride the convolutions by time steps. A downside of such approach is that we do

not have access to time steps well into the past. A dilated CNN proposed by DeepMind

[12], (see figure 2.1) may be used to make better use of temporal dependencies found.

Figure 2.2.1 Taken from Deepmind's WaveNet paper for a dilated CNN [12].

2.2.3 XGBoost

Gradient boosting is an ensemble method technique used to predict by combining weak

learners together, and iteratively improving the prediction. [9]. Extreme gradient

boosting, or XGBoost is a portable library that implements a gradient boosted tree using

a variety of different programming languages used for machine learning [13].

BACKGROUND

7

2.3 Optimisers

Optimisation has many applications in different fields such as engineering, architecture

and economics. Optimisers in ML tasks can assist to tune the hyperparameters that are

responsible for the configuration of the model before the training process starts. The

right set of hyperparameters greatly influence the performance and accuracy of the

predictive algorithm, amongst other factors. The specific configuration, i.e. set of

hyperparameters chosen, e.g. number of layers, number of units within each layer, the

learning rate, etc. can only be changed before every training run. Fine tuning these

hyperparameters in a feasible way by making use of metaheuristics is of interest in this

study.

2.3.1 Hyperparameter Optimisation

Hyperparameter optimisation is a distinct form of optimisation in which its objective is

to select and tune the hyperparameters of a model. During the experimentation

different combinations of hyperparameters could be used, where the combination

which improves the predictive algorithm the most is selected. Due to the vast search

space, and great number of combinations, it is not feasible to try out every combination

to determine the optimal combination. The use of hyperparameter optimisers e.g. [14],

[15] can allow for a near optimal combination to be found at a much lesser

computational cost. Sampling techniques, such as the grid search algorithm are used to

perform an extensive search over the search space, using fixed step sizes to reduce the

computational time required, however such a sampling approach may entirely skip

important regions of the search space.

2.3.2 Parameter Control

Machine learning models using artificial neural networks (ANN) use a pre-configured

set of hyperparameters, e.g. dictating the number of units in each layer, which impact

the performance. During the training process, the optimiser algorithm attempts to find

BACKGROUND

8

the weight vector that minimizes the error function for a particular model, after many

iterations over a particular dataset. Certain optimisation algorithms use a number of

hyperparameters that affect the manner in which each weight is altered, to potentially

achieve a better result in the next iteration using the newer weights, however this is not

always the case. Using an error function, it is possible to convert the optimisation

problem; for the optimal combination of weights, into a minimum or maximum

problem. When a change in weights provides better results, the loss in the error

function is reduced and vice versa [9]. The selection of the optimiser and cost function,

needs to be also carefully evaluated.

2.3.3 Gradient Descent

The selection of the optimising method may also vary results, hence finding the suitable

method for the specific use case remains of interest to researchers [16]. The Gradient

descent method attempts to find the better weights iteratively in order to find the

minimum of the error function. The selection of the learning rate hyperparameter

requires good consideration as it controls the size of each step to reach the minimum.

When the learning rate is large we could skip the minimum completely. Gradient

descent fails to address the problem to find the global optimum among many local

minimums (refer to figure 2.1) [9]. Sebastian Ruder highlights the improvements made

to gradient descent technique for tuning the parameters of a neural network [17]. In the

first version of gradient descent; Batch gradient descent a change is only made every

epoch, while in stochastic gradient descent (SGD) the algorithm updates the internal

paramters every training example. Mini-batch gradient descent managed to combine

the above approaches together to update the parameters every small batch of inputs

[17].

Figure 2.3.1 Graph showing gradient descent problems. Taken from Hands-on Machine Learning [9].

BACKGROUND

9

Momentum optimisation improves SGD by accelerating the descent in a manner to

mitigate it from getting trapped within the local minimum. Momentum optimisers e.g.,

RMSprop, ADAM, etc. requires an additional hyperparameter, the momentum which

is set from zero to one. This additional hyperparameter serves as the friction of the

descend, where a value of zero has no friction and one has maximum friction. The

Adam optimizer is most used as a black box optimiser, since it achieved good results

in many different applications [9].

2.3.4 Metaheuristic Optimisers

A type of hyperparameter optimisation known as metaheuristic optimisers will be the

focus of this study. Metaheuristic optimisation [18] uses intelligent ways of exploring

the sample space to find near optimal solutions. Such optimization techniques have

been of great interest to researchers [19]. Metaheuristic optimisers are governed by two

fundamental principles, exploration and exploitation [20]. Exploration refers to

intelligently looking into the sample space for possible candidate areas of search. Once

good areas of search are found, exploitation performs a local search for the optimal

solution within that space. Another characteristic of metaheuristics is history; ability to

remember leading candidate solutions. The best local solutions in different areas of the

search space are compared with other candidate solutions, to find the best available

solution. Even though only a subset of search space is tested, metaheuristic optimisers

are capable of finding near optimal solutions. Iteratively searching a large search space

may be impossible due to the large computational effort. In contrast searching using a

BACKGROUND

10

metaheuristic optimiser can be done in feasible time. The following sections describe

in detail particular metaheuristic optimisers, and their principle algorithm to conduct

search.

2.3.5 Particle Swarm Optimisation

The particle swarm optimisation (PSO) algorithm, introduced by Kennedy et al. [21],

was inspired by the behavior of flocking birds [22]. This metaheuristic optimiser

algorithm is capable of logically finding near optimal hyperparameters by starting with

a population of candidate solutions; referred to as particles. The algorithm conducts

search by moving these particles around in the solution space. The movement;

composed of both speed and direction (velocity), is influenced by observing the best

local candidate solution, from what had already been searched. As every particle

moves through the solution space, the better local solutions found alter the direction of

the other particles. Using this method, the swarm, i.e the set of particles, navigate in

the direction of the best available solution, possibly finding a better solution in the

process. The paths taken by each candidate particle allows the PSO algorithm to search

large spaces of candidate solutions with the aim of providing a near optimal solution

without the need of exhaustive search [23]. Recently further improvements made to the

PSO algorithm as shown in [24], that address short-comings of the base algorithm.

2.3.6 Evolutionary Algorithms

The genetic algorithm (GA); a population based search heuristic inspired by the

biological evolution process. of natural evolution. The algorithm functions by selecting,

based on fitness, the better solutions from a population, to be used to identify new

candidates to add to the population in order to improve the next generation. This

paradigm can be applied to find the near optimal hyperparameters based on previous

hyperparameter values that previously gave promising results. The best candidates are

chosen as the hyperparameters when no tangible improvements are made between

generations [25]. When parents from the current generation have better fitness, their

children will have a better chance at selection. The genetic algorithm (see figure 2.1)

process, made up of key steps; the starting population of candidate solutions possible

BACKGROUND

11

chosen at random, the fitness function, selection, crossover and mutation. The fitness

function compares a solution with other solutions in the population, determining the

likelihood whether or not the solution is selected for the next generation. The concept

behind the selection phase is to select the fittest solutions and let them pass their

characteristics to the next generation. Using crossover, the algorithm exploits the

leading characteristics, to generate better candidates. The mutation part of the

algorithm introduces a random element where a subset of the new generation has parts

of their characteristics altered. Mutation provides diversity to the new generation and

is used to prevent early convergence. The algorithm ends when there is no

improvement from one generation to the next. Differential evolution is another form of

an evolutionary algorithm.

Figure 2.3 Flowchart of an evolutionary algorithm (Genetic Algorithm). Adapted from [25].

BACKGROUND

12

2.4 Distributed Systems

Modern ML applications require a substantial amount of computer resources to achieve

their goal, e.g. computation, that challenge traditional computer systems to complete

in a timely manner. When fine-tuning hyperparameters, the training computational

cost needs to be repeated potentially thousands of times. Traditional systems use

vertical scaling; adding more resources to a single machine to increase its capabilities,

e.g. processors or storage devices. However, this strategy is unable to handle large

datasets, as it is limited by a single point of failure, and I/O bandwidth limitations [26].

A distributed computer system can apportion the workload among many machines

and is capable of horizontal scaling; increase the number of independent machines in

the system. Rather than having a single extremely capable computer, the workload is

split evenly between several high-performance machines, making scalability simple by

just adding more machines. Distributed architectures are widely used by cloud

computing providers e.g. Amazon Web Services (AWS). Available networks of

standard PCs; commonly left unused in computer labs of organisations, research

centres, and universities, could be used for intensive ML tasks, e.g., hyperparameter

fine-tuning, using a distributed system. Using Beowulf network clusters [27], it is

possible to compute ML tasks on standard PCs, which individually are incapable of

performing. A number of distributed systems [26], [28] can be used to coordinate a

large task among a large number of computers.

2.4.1 The MapReduce Model

The MapReduce model provides a way to distribute computing over several machines,

using communication solely to coordinate jobs amongst the machines. The map stage

splits the processes among the machines within the network, where each machine

computes the allocated tasks individually. Upon completion of all the tasks, the reduce

stage combines the results from all the machines into the single result. The primary

advantage of the MapReduce model is that to scale the computation, more machines

can be added. Apache Hadoop, an implementation of the MapReduce model, facilitates

BACKGROUND

13

the distribution of computation of a network. Apache Spark adds to this by improving

on the MapReduce model [29].

2.4.2 Distributed Machine Learning

The training of ML models can be performed using a distributed fashion. There are two

principal ways to distribute ML, either distributing the dataset, or by distributing the

learning model. With data parallelism the dataset is split into even chunks that are

trained simultaneously by identical model instances. Data parallelism is capable of

training extremely large datasets among a sizable number of model instances. Model

parallelism rather than distributing the dataset, the dataset is duplicated multiple times

depending on the number of machines and parts of the model is split into separate and

different instances [26].

LITERATURE REVIEW

14

Chapter 3 - Literature Review

This section will give discuss previous and current works about the application of

machine learning models for the prediction of blood glucose levels. The prediction

horizons (PH); how far into the future the prediction is made, frequently used in such

studies are of 30, and 60 min. Current works propose the use of novel ML techniques

and classical time series approaches. Apart from the selection of the predictive learning

algorithms, an investigation will be made about the hyperparameter optimisation

strategies used for fine tuning model hyperparameters, with a focus on metaheuristic

optimisers. Related works make use physiological data collected from a number of

sensors e.g. continuous blood glucose measurements, to train their predictive models.

In this literature review the ohioT1DM dataset will be evaluated in detail further on

(section 3.2), since it is made available to researchers.

3.1 Machine learning implementations of blood glucose level

prediction

Using current blood glucose values, current studies show that it is possible to forecast

values that help identify upcoming glyceamic events in the near futures. A number of

studies experiment on the use of an RNN as the predictive model for such a prediction.

Martinsson et al. [30] propose the use of an RNN with an LSTM cell to forecast the

blood glucose level but rather than using many features of the dataset their hypothesis

is that the blood glucose level is solely feasible to carry out a prediction. To improve

their result, it was decided to utilise a glucose-specific loss function [31] which is able

to map a penalty term for predictions that can lead to clinically dangerous results. The

only preprocessing technique performed was value scaling blood glucose levels by

0.01. Rather than using interpolation to fill the missing data gaps due to the possible

bias, they used similar historical data pairs found within the dataset. The

hyperparameter selection was carried out by training using two patients from the

LITERATURE REVIEW

15

dataset by the performance on the last 20% of the data. The hyperparameters relating

to the RNN, such as the LSTM state size, have been chosen using trial and error in this

study. The results of the experimentation are RMSE of 20.1 ±2.5 mg/dL for a PH of

30min and RMSE of 33.2±3.1 mg/dL for a PH of 60mins. In a similar study, Khadem et

al. [32] use an RNN with an LSTM cell that achieves comparable results to [30].

Mohebbi et al. [33] compare a ARIMA; a classical time series forecasting technique, with

an RNN for short term blood glucose prediction using continuous glucose monitoring

(CGM) for a PH of up to 90 min. They note that BG levels are sufficient for such a

prediction despite the accuracy of the prediction may benefit from other physiological

data sources such carbohydrates and exercise. The reason for omitting such data fields

is because they require manual input of data by the patient, which may result in poor

quality of data. An advantage of their proposed approach, is its ability to function using

limited historic blood glucose data. The approach involves using an RNN with a LSTM

cell to preserve glyceamic events in memory, and also a classical approach by using an

ARIMA model. The dataset used for the experimentation is 14 days of continuous BG

data obtained from CGM devices, for 50 patients with diabetes, with a granularity of 5

min. Interestingly the best performing model, the LSTM used bayesian optimisation to

find the better hyperparameters for the historical window size and the dropout level.

The findings of this study include that even though the RNN methods give overall best

results, the performance of the ARIMA model in certain situations is as good or even

better than the RNN approach.

Chen et al. [34] propose a dilated recurrent neural network model to forecast BG levels

for a PH of 30 minutes. They noted that due to the nature of the problem which involves

time series data, a recurrent neural network is capable of providing acceptable level

predictive performance. Their choice for a dilated RNN is inspired by a previous study

by Chang et al [11]. Chen et al. note that use of a dilated RNN allows the neural network

to better learn temporal dependencies associated with events in the ohioT1DM dataset

[35]. Chen et al. decided to batch the inputs every hour (12 data points of 5 mins each).

During their experimentation it was discovered that certain of the fields within the

ohioT1DM dataset such as exercise, heart rate, and skin temperature fail to impact the

accuracy of the model. The structure of their model consisted of 3 layered dilated RNN,

LITERATURE REVIEW

16

using 32 units in each layer with an exponential dilation. Vanilla RNN cells were found

to have the better result. The hyperparameters of this model include the number of

units at each layer, and the type of cell used within the RNN. It was found during their

experimentations that results degraded when increasing the unit count, due to the size

of the dataset (roughly 10,000 data points per patient). During their testing they noted

that the batch size of the input can also have an effect on the performance of the model.

The results achieved using the proposed DRNN model is RMSE of 19.04 mg/dL for a

PH of 30min.

Midroni et al. [25] compare gradient boosted trees implemented using XGBoost with

RNN models using LSTM cells. They conducted feature ablation experiments, to study

whether an accurate prediction could be made without using certain data fields from

invasive measurement devices e.g. BG measurements from glucometers. During their

experimentation, it was discovered that the prediction is negatively affected when

blood glucose is ablated. When analysing XGBoost’s feature importance rank, Midroni

et al. observed that the main influences on the result of the prediction is primarily based

on current BG levels, secondly on BG level of one hour ago and other BG values within

the past hour. Their main finding from the ablation experiments was that the XGBoost

approach gives the best results when insulin or band features are ablated, giving an

RMSE of 19.32 mg/dL for a PH of 30 min. A comparable study [36], uses XGBoost to

predict blood glucose levels, while omitting data features from the predictor, with the

aim of providing an accurate and non-invasive prediction, without using a continuous

glucose monitor (CGM) device. The experimentation involved training the dataset with

1 to 3-hour time lags using XGBoost. The feature ablation results found in this study,

are consistent to [25], when removing the BG feature from the prediction.

Another ML approach favoured amongst researchers for a blood glucose prediction is

the CNN, due to the benefits that convolutional filtering and pooling layers give when

dealing with time series data. Zhu et al. [37] argued that by converting the problem into

a classification problem, a casual dilated convolutional neural network (DCNN)

layers model based upon WaveNet [12] could be used to categorise the blood glucose

level into 256 categories. The input for their experimentation was made up of only four

fields from the ohioT1DM dataset [35], as it was discovered that the inclusion of

LITERATURE REVIEW

17

additional fields degraded the performance of the classification. Zhu et al. note the need

for pre-processing, they firstly used first-order interpolation to fill in missing values in

the dataset, then to increase the size of the usable dataset, they combined subsets of the

datasets between patients for large sections of missing data in addition to filtering. The

results of the model proposed in this study gives a RMSE of 21.73 ±2.52 mg/dL for a PH

of 30 minutes.

Li et al. (2020) propose GluNet [38], a framework for glucose forecasting with a similar

DCNN model proposed by Zhu et al. [37] The architecture of GluNet contains four

components which are preprocessing, label transformations, multi-layer dilated

convolutions and post-processing. This study uses multiple datasets for comparisons,

but for the purpose of this study only the OhioT1DM dataset will be reviewed. The

preprocessing techniques employed involve removing the outliers from CGM

measurements and other user reported fields within the dataset, interpolation and

extrapolation for filling missing data. The label transformation step aims to improve

the predictive accuracy. The hyperparameters were tuned on the validation however

no details are given on the specific technique used. The results of GluNet are slightly

better than other models of this type, with a RMSE= 19.28 ±2.76 for PH of 30min and

RMSE= 31.83 ±3.49 for a PH of 60mins.

Current studies also combine the use of a CNN with an RNN with the aim of improving

the accuracy of the BG prediction. Li et al. [30] explore the use of a multi-layer

convolutional recurrent neural network (CRNN) architecture for the prediction of

blood glucose level. The CRNN architecture proposed is composed of a multi-layer

convolutional neural network that is responsible for the extraction of data features

using convolution and pooling techniques, followed by an RNN layer with LSTM cells

and fully-connected layers. The dataset used for the training of the aforementioned

consists of 6-months clinical data of 10 T1DM patients. Similar to other studies the

dataset had missing data values, hence the preprocessing involved the use

of interpolation and extrapolation. The results of the proposed model, RMSE of

21.07±2.35 mg/dL for a PH of 30min ,outperforms the other prediction models

commonly used for BG prediction such as support vector regression (SVR). It was noted

LITERATURE REVIEW

18

that a limitation of the proposed CRNN model is that the performance degrades rapidly

when the time horizon for the prediction is increased.

Bhimireddy et al. [39] evaluate the effectiveness of sequence-to-sequence (Seq-2-Seq)

for time series modelling. The Seq-2-Seq model was experimented using LSTM, A

biLSTM and a CNN-LSTM model. It was found that Seq-2-Seq BiLSTM outperforms

the others. The result of the best model achieved an RMSE of 21.8±4 mg/dL for a PH

of 30min and RMSE of 35 ±5.4 mg/dL for a PH of 60min.

Gu et al. [40] propose a neural physiological encoder in addition to an RNN for

accurately predicting the blood glucose level. The neural physiological encoder uses

decomposed convolutional filters that are capable of generating features that help

when producing the prediction. Their technique produced leading results, when using

the ohioT1DM dataset, with an RMSE of 17.80 mg/dL for a PH of 30 min.

Güemes et al. [41] contend that current research is focused on the prediction of BG for

a PH of up to 2 hours; which is not suitable to prevent overnight hypoglycaemia.

Hence, they propose the use of a binary classifier to predict BG overnight, using the

OhioT1DM dataset to carry out their experimentation. The data fields used in this study

are CGM blood glucose level, insulin doses, bolus, and basal, meal times, time and

amount of rescue carbs, and time of self-reported hypoglycaemic events. After

preprocessing of the dataset, the 8-weeks of data was partitioned by day, and further a

night-time and day-time period. After extracting key features from each period, three

binary classifiers are used to identify whether there will be either a hypoglycaemic

night, hyperglycaemic night or on-target/off-target night. They found that using this

technique it is possible to forecast overnight glycaemic events, however a larger dataset

is needed to further validate their technique.

3.2 The OhioT1DM Dataset

Data-driven approaches using ML require a considerable amount of data, upon which

the model may be trained. Unfortunately the appropriate clinical data relating to blood

glucose on real patients is difficult to obtain and gather, and may require joint effort

LITERATURE REVIEW

19

with a healthcare institution. This lack of available patient data made it difficult for

researchers to perform studies about blood glucose prediction by using contrived

simulated data. However, recently the release of the OhioT1DM dataset [35] to

interested researchers, and the Blood Glucose Level Prediction Challenge fuelled

interest is shown in this area of study. The ohioT1DM dataset is made up of eight weeks

of time series data for each of the 12 people with type 1 diabetes. The dataset includes

data fields such as blood glucose level every 5 minutes using a Medtronic Enlite CGM

sensor, galvanic skin response (GSR), step count etc. The dataset also includes self-

reported data such as hypoglycaemic episodes, exercise, meals taken, and periodic

blood glucose values obtained from the patient. Due to the manual input of parts of

this dataset, the quality of the data is not consistent throughout, for example missing

values and certain data fields are dependent on which type of sensors were used.

3.3 Metaheuristic optimisation approaches for time series

forecasting

Hamdi et al. [42] propose the use of the differential evolution optimiser; a evolutionary

metaheuristic optimiser, to improve the accuracy of their prediction when using

support vector regression. Wang et al. [43] also particle swarm optimisation; a swarm

intelligence metaheuristic, to enhance the prediction of their RNN-LSTM model.

Despite there being a number of studies using hyperparameter optimisation,

algorithmic hyperparameter optimisers e.g. metaheuristic optimisers, are not

commonly used, where instead the majority of previous and current works use an ad

hoc way to select hyperparameters for their predictive algorithms.

3.4 Comparison of related works

This section compares related works in this literature review using machine learning

techniques, for blood glucose prediction using the ohioT1DM dataset. The table 1.1

shows the results of their experimentation, using the root square mean error (RMSE)

standard metric, for prediction horizons of 30, and 60 minutes. In order for a fair

comparison only studies using the ohioT1DM dataset are compared. The proposed

LITERATURE REVIEW

20

approach by Gu et al. achieves the best performance (RMSE= 17.80) for a PH of 30

minutes, and interestingly the RNN approach proposed by Khadem et al. [32] gives

leading results (RMSE= 19.60±0.47) for a PH of 60 minutes. Xie et al. [44] provide a

benchmark for many machine learning approaches for BGP using the ohioT1DM

dataset.

Table 3.4.1 Comparison of prediction results of current literature using the ohioT1DM dataset.

Year Paper Model RMSE (mg/dL)

 PH=30min PH=60min

2018

Zhu et al. [37] DCNN 21.73 ±2.52 -

Chen et al. [34] DRNN 19.04 -

Midroni et al. [25] XGBoost 19.32 -

Martinsson et al. [45] RNN 20.1 ±2.5 33.2 ±3.1

2020

Bhimireddy et al. [39] biLSTM 21.8 ±4 35 ±5.4

Li et al. [38] DCNN 19.28 ±2.76 31.83 ±3.49

Gu et al. [40] CNN-RNN 17.80 -

Khadem et al. [32] RNN-LSTM 19.4 ± 0.34 19.6 ±0.47

3.5 Summary of related works

It was commonly observed that related works using the ohioT1DM dataset, used a

number of pre-processing techniques, such as interpolation, extrapolation, and using

data from other patients to fill missing data series, in order to improve the quality of

the available data. In [30], an RNN using only the blood glucose data field was used for

training, and to perform the prediction. Mohebbi et al. [33] compare the classical

forecasting technique ARIMA with a novel ML technique using an RNN. Chen et al.

[34] introduce the use of a dilated RNN structure for the prediction of blood glucose.

The studies [25], and [36] investigate the predictive performance of XGBoost when

ablating certain data fields from the dataset with the aim of removing the need of blood

glucose measuring devices. Rather than using regression to predict future BG values,

[37] convert the problem into a classification problem. The RNN using a neural

LITERATURE REVIEW

21

physiological encoder, that uses convolutional layers, proposed in [40] gave the leading

results for blood glucose level prediction for a prediction horizon of 30-min, when

compared to the related works reviewed in this chapter. The use of metaheuristic

optimisers have been also proposed by [40], and [41] for the domain of blood glucose

prediction, making use of the differential evolution algorithm, and particle swarm

optimisation to find near optimal hyperparameters. However, based on the studies

reviewed, a common finding is the lack of focus for hyperparameter optimisation using

algorithm based methods, such as metaheuristics. A number of hyperparameters e.g.

the number of units in a layer, are chosen ad hoc or by using trial and improvement.

This paper will investigate further the use of metaheuristic optimisers with predictive

algorithms used in previous studies when predicting blood glucose, with the aim of

increasing the accuracy of such ML approaches. In the next chapter the motivation and

aims for conducting this particular study will be discussed, and defining the research

questions for this study.

MOTIVATION AND AIMS.

22

Chapter 4 - Motivation and Aims.

In this chapter the specific choice of focus regarding the prediction of blood glucose

levels will discussed. The research questions posed in this study are defined, alongside

the motivation for this study.

4.1 Research Questions

The prediction of blood glucose levels has several proposed machine learning

techniques (refer to section 3.1). Each of these machine learners require a number of

hyperparameter to be configured. The selection of these hyperparameters can affect the

predictive accuracy of such models. It was found that several studies choose these

hyperparameters in an ad hoc manner. This gave motivation to apply hyperparameter

optimisation in the context of BGP on the ohioT1DM dataset, specifically by using

metaheuristic optimisers. The following research questions describe what this study

has addressed.

What is the degree of improvement when using a metaheuristic approach over a

completely random search given the same search space?

What is the increased computational cost to achieve the improvement in predictive

performance?

How can the computation be carried out in a shorter time, what are possible ways of

distributing the workload among several machines?

4.2 Aims and Objectives

The aim of this study is to investigate the use of metaheuristic optimisers with machine

learning model for blood glucose levels prediction when using the ohioT1DM dataset.

MOTIVATION AND AIMS.

23

The primary objectives are to compare the predictive performance of different machine

learners after performing hyperparameter optimisation using metaheuristic optimisers

to perform model selection.

Additionally, to investigate whether such metaheuristic approaches can achieve better

results when compared with random search optimisation given the same number of

training runs.

The objective is to provide blood glucose using these techniques with a prediction

horizon of 30 minutes and 60 minutes, as performed in literature reviewed in section

3.4.

Tuning the hyperparameters which affect the predictive performance is of interest. As

the search space for hyperparameter is very large, defining the bounds of the

hyperparameter search space was required for the algorithms to converge in a timely

manner.

Given the significant increase in expected computation required, a secondary objective

is to the investigate accelerated computing by making use of graphic processing units

and using a distributed processing infrastructure. Additionally, to investigate the

potential benefit of using a distributed processing architecture.

METHODOLOGY

24

Chapter 5 - Methodology

In this chapter, the approach to the applied research is discussed. The technologies used

in this paper will be addressed, alongside the particular use of the ohioT1DM dataset,

the implementation of the machine learners, and metaheuristic algorithms used to

perform the hyperparameter optimisation. Furthermore, an overview is given of

process used for setting up the experimentation, and the comparisons made with

random search optimisation to investigate the performance of the metaheuristic

optimisers. To carry out the objectives three machine learners were implemented, an

RNN with an LSTM cell, an MLP and a XGBoost. Hyperparameter optimisation is

performed using two metaheuristic optimisers, the genetic algorithm and particle

swarm optimisation, on the machine learners to tune the hyperparameters. The model

selection was run on a distributed processing architecture using Apache Spark, to be

capable of distributing the training among several EC2 instances on AWS.

5.1 Software and Tools

Python is a high-level general-purpose programming language. It is used to create

scripts for data pre-processing, and to build the machine learners using python

packages.

Pandas is a data analysis and data manipulation tool. The dataset XML files were

converted into a Pandas data frames so that the data could be processed according to

the specific format required by the machine learners.

Numpy is arithmetic library for multi-dimensional arrays. It is used throughout to

reshape arrays.

PyTorch is an open-source machine learning library. Using this python package, the

MLP and RNN models were implemented.

Apache Spark is an open-source general purpose distributed processing framework.

Virtualenv is a tool for creating python environments.

METHODOLOGY

25

Jupyter notebook is an open-source interactive computational notebook. Using Jupyter

notebook it was possible to obtain interactive results when performing the initial

experimentation.

Amazon EMR is a tool for creating and configuring MapReduce clusters like Hadoop

or Spark.

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure,

resizable compute capacity in the cloud.

PySwarms is a research toolkit for particle swarm optimisation in Python [46].

NVIDIA CUDA toolkit provides a development environment for creating high

performance GPU-accelerated applications.

YARN is a resource manager for Hadoop applications.

5.2 Hardware and Distributed Infrastructure Using Apache

Spark

Initial experimentation was performed on Google Colaboratory, a web IDE for python

notebooks, using a single NVIDIA Tesla K80 Accelerator. However, running the

experimentation multiple runs to obtain average performance significantly increases

the overall training time. Hence, to further reduce the training time required to perform

the experimentation, a distributed system was considered. By using Amazon EMR to

manage and configure an Apache Spark cluster, composed of two AWS EC2

g4dn.xlarge instances – each equipped with an NVIDIA T4 GPU designed for

accelerating machine learning workloads, and have NVIDIA CUDA installed to allow

for parallel computing. The Spark cluster is made up of a master-slave architecture

using the YARN resource manager (refer to figure 5.1), a single instance for the master

node and a single slave/work node.

METHODOLOGY

26

Figure 5.2.1 Architecture diagram of Apache Spark running on Amazon Web Services, where Amazon

EMR is used to create, configure, and manage the cluster made up of accelerated EC2 instances.

5.3 The dataset

The OhioT1DM data consists of 8 weeks of continuous glucose monitoring (CGM) data

physiological data, and self-reported life-event data for each of 12 people with type 1

diabetes (refer to figure 5.3). The dataset split into the training and testing set, having

6 weeks and 2 weeks of data respectively. The testing set is further broken down into

the testing and validation set, each having a week worth of data. For the use with the

machine learning models, the data was converted to comma separated values from

XML format using a python script, and then to tensors for faster computation on

accelerated hardware.

To gain access to the ohioT1DM dataset, a Data Use Agreement (DUA) form was filled

and signed by representatives from both the University of Ohio and the Department of

Computer Information Systems at the University of Malta, which made this data

available for research purposes. The data files included a visualisation tool called

OhioT1DM Viewer that provides a daily view of the data for each of the patients.

METHODOLOGY

27

Figure 5.3 Time series data of patient 544 using OhioT1DM Viewer. It was noted that multiple fields have

missing data, including sparse parts with little data.

5.3.1 OhioT1DM Dataset Columns

For this study a few columns were considered as input to the machine learners. In

section 6.1.1 a detailed explanation of the combination of these columns used in the

experimentation is outlined. The Table 5.3.1 shows the considered columns for this

study. The most important data column of the ohioT1DM dataset is the glucose level

as it provides accurate measurements of the patients’ blood glucose levels every five

minutes.

Table 5.3.1 Description of data columns used from the OhioT1DM dataset. Contains both sensor time

series and self-reported data. Reproduced from Marling et al. [35].

Field Description

Patient The patient ID number and insulin type.

Glucose Level Continuous glucose monitoring (CGM) data, recorded every 5

minutes.

METHODOLOGY

28

Finger Stick Blood glucose values obtained through self- monitoring by the

patient.

Temp Basal A temporary basal insulin rate that supersedes the patient’s

normal basal rate. When the value is 0, this indicates that the

basal insulin flow has been suspended. At the end of a temp

basal, the basal rate goes back to the normal basal rate

Bolus Insulin delivered to the patient, typically before a meal or

when the patient is hyperglycaemic. The most common type of

bolus, normal, delivers all insulin at once. Other bolus types

can stretch out the insulin dose over the period between a

begin and end timestep.

Basis GSR Galvanic skin response, also known as skin conductance or

electrodermal activity. For those who wore the Ba- sis Peak, the

data was aggregated every 5 minutes, for those who wore the

Empatica Embrace the data is aggregated every 1 minute.

Basis Heart Rate Heart rate aggregated every 5 minutes. This data is only

available for people who wore the Basis Peak sensor band.

5.3.2 Using CGM only

A crucial data field from the ohioT1DM dataset is the glucose level values obtained

from the CGM. This data provides an accurate blood glucose level of the patient every

five minutes. By using a time window of these blood glucose values with n time steps,

where n >= 1, it is possible to predict a future value. The length of the time window can

significantly affect the performance of the machine learner; hence this is set up as a

hyperparameter for each of the ML models.

METHODOLOGY

29

5.3.3 Interpolation for missing data in time series

The data contains missing values, including missing ranges of data. To fill the missing

data, Newton’s polynomial interpolation was used. After using this step the number of

rows for each patient increase, refer to table 5.1 for more details. Newtons polynomial

interpolation can be expressed as follows:

5.3.4 Resampling the Time Series

The time index for the different fields found within the dataset had inconsistent time

indexes. To better match the data, all fields where resampled every 5 minutes except

for user reported data, which is sparser, e.g., the finger stick reading was resampled

every hour.

5.3.5 Batching the data

Certain ML models require a rolling window of previous time indices to give a better

prediction, this is shown in a number of literature, e.g. when using XGBoost Midroni

et al. [36] show that the previous hour of CGM time series value has the biggest impact

of the predictive performance

5.4 Hyperparameter Search Space

The primary motivation for the application of metaheuristic optimiser is to strategically

traverse the hyperparameter search space with the aim of finding better

hyperparameters. Different machine learners implemented in this study have varying

hyperparameters which are to be tuned. As many of the hyperparameters are

continuous values, a minimum and maximum bound needs to be defined in order to

restrict the search space with the potential benefit that the metaheuristic optimisers use

less iterations to converge. However, there are hyperparameters relating to the

configuration of the dataset, which are common across all the implemented machine

learners (refer to table 5.2). The time window reflects how many previous time steps of

data points are used as the input to the machine learners, where the minimum is set to

METHODOLOGY

30

12-time steps -equivalent to the previous hour when each step is equal to 5-mins, as it

is shown in literature that the previous hour of data has significant effect on the

predictive performance [33]. The sample timestep hyperparameter controls how much

time each timestep represents, where it can be 5mins per step as the lowest, up to

30mins per timestep. The maximum for the sample timestep was set to the same

magnitude as the shortest prediction horizon as it was thought that increasing the data

reduction beyond that, the machine learners would not be capable of capturing the

finer movements of blood glucose levels. These hyperparameter changes are made

possible using the pre-processing techniques defined in section 5.3 using batching to

create the time windows and the resampling technique to convert the time series. The

prediction horizon hyperparameter controls how far in the future the prediction is

made. This parameter is set to either PH=30mins or PH=60mins in the future as these

prediction horizons are used for comparison in current literature (refer to section 3.1),

is not tuneable by the optimisers. In the following sections, the focus was made on the

machine learner dependent hyperparameters, along with their defined bounds and

justifications for such bounds.

Table 5.4.1 Hyperparameters common across all machine learners.

Hyperparameter Min. Bound Max. Bound Tuneable

Time window

Sample timestep

Prediction horizon

12 timesteps

5mins

30mins

144 timesteps

30mins

60mins

Yes

Yes

No

5.5 Machine Learning Models

Different ML models have different parameters in their configuration, each can

potentially affect the performance of the model. In the section, the unique

hyperparameters for each of the models will be explored.

5.5.1 Multi-Layer Perceptron

The multi-layer perceptron was implemented using the PyTorch library. It consists of

an input layer, which its size changes depending on the specific time window size, and

METHODOLOGY

31

the subset of data fields from the ohioT1DM dataset (see figure 5.1). It can take n

(integer) layers, where n >= 1, where each of the layers have the same number of hidden

units. The activation function used is either the rectified linear activation function

(ReLu) or Sigmoid, depending on the choice set by the hyperparameter optimiser. The

loss function was set to the ADAM optimiser, with the learning rate as a tuneable

hyperparameter. The activation functions considered can be expressed as follows:

Equation 5.5.1 Activation Functions for MLP. (1) Sigmoid function, (2) ReLu

𝐱 =
𝟏

𝟏 + 𝐞−𝐱

(1)

𝒙 = 𝐦𝐚𝐱 (𝟎, 𝒙) (2)

Figure 5.5.1.1 Multi-layer perceptron with 12 glucose inputs mapping into a single glucose value. The

hyperparameter such as the inputs, number of hidden units (neurons), and the number of hidden layers

may be tuned to provide better performance.

The hyperparameter search space considered in this study for the MLP neural network

has the following hyperparameters:

• Number of input units which is determined by the columns used from the

OhioT1DM dataset and the length of the moving window used.

• Number of hidden units found at each of the hidden layers

• Number of layers between the input and output layers.

• Number of epochs to train the MLP. The maximum number is set to 250 epochs

as it was indicated in a short experiment where 5 random configurations of MLP

METHODOLOGY

32

models were run for 1000 epochs to obtain an indication of how many epochs

are required to capture most of the improvement (see figure 6.1).

• Learning rate for the Adam parameter optimiser (refer to section Error!

Reference source not found.)

Figure 5.5.2 Line chart with five random combinations of hyperparameters for the MLP model. It

indicated little improvement after 250 epochs on average

*Run 1 learning rate= 0.051, Run 2 learning rate= 0.071, Run 3 learning rate= 0.083, Run 4 learning rate=

0.069, Run 5 learning rate= 0.02

The bounds that restrict the hyperparameter search space of the MLP were set (see table

5.6) to allow for a faster convergence by the metaheuristic optimisers.

Table 5.6 Hyperparameter search space bounds for MLP.

Hyperparameter Min. Bound Max. Bound

Input Units 12 144 * (number of data fields)

64

0.1

24

Hidden Units 12

Learning Rate 0.001

Number of Layers 1

Window Size 12 time steps 144 time steps

Sample Step 5min 30min

Activation Function ReLu or Sigmoid

METHODOLOGY

33

Max Epochs 250

5.5.2 Recurrent Neural Network with LSTM

The recurrent neural is implemented using the PyTorch library using a single LSTM

layer. The parameter optimiser used is the Adam Optimiser, with the learning rate as

a tuneable hyperparameter. This neural network has the following hyperparameters:

• Hidden state size. It is noted that in initial experimentation there was an

indication that a larger hidden state size provides a better configuration for the

RNN, however at an increased computational time. Due to this, it was decided

to restrict the size to 24.

• Number of input units (sequence length)

• Learning rate

• The number of epochs trained for this RNN model is 400 epochs, refer to figure

4.3. Due to the nature of the machine learner, more epochs are needed than the

MLP model.

Figure 5.5.3 Loss vs. Epoch chart for 5 RNN runs. Each of the runs had a random hyperparameter

combination using the bounds defined. Run 1 required more epochs to achieve the same loss as the other

four runs, this may be due to it having the smallest learning rate hyperparameter. This chart gives an

indication that 400 epochs is sufficient to provide lesser loss on the RNN model.

METHODOLOGY

34

*Run 1 learning rate = 0.005, Run 2 learning rate = 0.089, Run 3 learning rate = 0.093, Run 4 learning rate =

0.047, Run 5 learning rate = 0.036

Table 5.6 Hyperparameter search space bounds for MLP.

Hyperparameter Min. Bound Max. Bound

Input units 12 144 * (number of data fields)

24

0.1

Hidden Size 1

Learning Rate 0.001

5.5.3 Extreme Gradient Boosting Trees

The extreme gradient boosting trees (XGBoost) was implemented using the python

package xgboost by using the XGBRegression module to adapt the learner for a

regression task. The XGBoost algorithm has multiple tuneable hyperparameters which

effect different parts of the training process. The following hyperparameters were

considered for tuning in this study:

• Step size (eta)

• Minimum cost reduction (gamma)

• Number of estimators

• Subsample size

• Maximum depth

• Minimum child weight

Table 5.6.3 Hyperparameter search space bounds for XGBoost learner.

Hyperparameter Min. Bound Max. Bound

Input Size 12 144

Eta 0.1 5

Number of Estimators 1 200

Gamma 0 50

Min. Child Weight 0.01 10

Maximum Depth 1 24

Subsample size 0.1 1

METHODOLOGY

35

5.6 The Genetic Algorithm Configuration

5.6.1 Initial Population Generation

The first generation of the population is made up of randomly selected

hyperparameters, similar to the random search approach. Beyond this step the

optimisation loop starts until there is convergence, or the algorithm reaches the

maximum allowed generation. In this study the maximum allowed generations was set

to 8, as increases the number of generations increases the number of models that are

required to be trained.

5.6.2 Crossover Method

The genetic algorithm was implemented using single crossover where an index in

randomly selected and at the crossover point the genes are set to the other parents.

5.6.3 Mutation

Random mutation on the children is performed using a mutation rate variable to

increase/decrease the number of changes to the genes for the children in the generation.

5.7 Particle Swarm Optimiser Algorithm and Configuration

The particle swarm optimiser defines randomly the position, i.e., the hyperparameter

combination, for each of the particles, and computes the cost for each of the particles.

Depending on the cost of the surrounding particle, each of the particles change velocity,

and position to that of the local best (see figure 5.7.1). After several iterations, the

particles converge to the position with the lesser cost.

Using the PySwarms python package, such a particle swarm optimiser was

implemented for each of the machine learners. The configuration used for the PSO was

a cognitive parameter c1 set to 0.5, a social parameter set to 0.8 and the inertia weight

parameter set to 0.8.

METHODOLOGY

36

Figure 5.7.1 Pseudo code of the PSO algorithm. Reproduced from [21].

EXPERIMENTATION

37

Chapter 6 - Experimentation

In this chapter the experimentation carried out in this paper is outlined. The RMSE

metric for regressions error is presented, along with Parkes’s error grid analysis to

check for clinical usability of the results. The planned experiments and

setups/variations of experiments are detailed to fulfil the objectives of this paper.

6.1 Planned Experiments

In this section the planned experiments to obtain the required results for the evaluation

are discussed. Each of the experiment sets are explained. The experiments can vary by

one or multiple of the following reasons:

• The subset of the ohioT1DM dataset

• The patient

• The machine learner

• The metaheuristic optimiser

• The prediction horizon

6.1.1 Subsets of the OhioT1DM dataset

The dataset contains many columns of data as expanded in section 5.3.1. The

experiments were setup with two variations. The first variant using simply the

continuous glucose machine time series as a time window. The second variation

included the finger stick data column, temporary basal, bolus and the basis GSR.

6.1.2 Variations of the Patient

The ohioT1DM dataset contains two cohorts of patients (refer to table 6.1.1), a cohort of

patients made available in the first edition of the BGLP Challenge in 2018 which make

use of the Basis sensor band and 530G CGM. Additionally, in the second edition of the

BGLP Challenge in 2020, another cohort of patient data was released that made use of

the Empatica sensor band and 630G CGM. The 2020 cohort contain slightly different

EXPERIMENTATION

38

physiological data fields than that of the 2018 cohort, hence different patients from both

groups are selected for experimentation.

Table 6.1.1 OhioT1DM dataset patient differences. Reproduced from [35]

ID Pump Model Sensor Band Cohort

540 630G Empatica

Empatica

Empatica

Empatica

Empatica

Empatica

2020

544 630G 2020

552 630G 2020

567 630G 2020

584 630G 2020

596 630G 2020

559 530G Basis 2018

563 530G Basis 2018

570 530G Basis 2018

575 530G Basis 2018

588 530G Basis 2018

591 530G Basis 2018

From the 2018 cohort the following patients were used 559, 563, 570, and for the 2020

cohort the following patients were used 540, 544, 552. The experiments conducted were

configured as follows:

Table 6.1.2 List of experiments that were conducted in this study.

Experiment Patient Machine

Learner

Hyperparameter

Optimiser

Dataset

Features

Prediction

Horizon

1 2018

cohort

RNN Random Search, GA, CGM

Only

30

2 2020

cohort

RNN Random Search, GA, CGM

Only

30

3 2018

cohort

XGBoost Random Search, GA CGM

Only

30

4 2020

cohort

XGBoost Random Search, PSO CGM

Only

30

6 2020

cohort

XGBoost Random Search, PSO Other

Features

60

EXPERIMENTATION

39

6.2 Root Square Mean Error

The root square mean error (RMSE) is a standard metric used in data science for

understanding the regressive performance of machine learners. Such measure is based

on the square root of the sum of squared differences between a given test set of actual

and the predicted values from the machine learner. In this case, measured in mg/dL for

blood glucose levels. RMSE can be formally expresses as:

𝑅𝑀𝑆𝐸 = √
∑𝑡=1

𝑇 (ŷ
𝑡

 − 𝑦𝑡)2

𝑇
 (6.2)

where T is the number of data points observed, t is the current element, ŷ
𝑡
is the

predicted value and y is the actual value.

6.3 Parkes Error Grid Analysis

Using the Parkes error grid (EG) one can determine the clinal usability of predictions

given by the ML models by making a comparison to the measured glucose values. The

EG is made up of five risk categories as shown in table, where depending on the

magnitude of the predictive error, a risk category can be assigned. After performing

model selection, the best model with the found hyperparameters, the resulting error is

plotted using Parkes EG. The ISO15197:2013 guideline specifies use of the Parkes error

grid for assessing outlier data points that do not meet the analytical accuracy

requirements. In the published version of this new guideline, 95% of the data points

must fall within risk category A [47].

Table 6.3.1 Risk categories identified for the Parkes Error Grid. Adapted from [48].

Risk Category Description

A No effect on clinical action

B Altered clinical action or little or no effect on clinical

outcome

C Altered clinical action—likely to effect clinical outcome

D Altered clinical action—could have significant medical risk

E Altered clinical action—could have dangerous

consequences.

EXPERIMENTATION

40

Evaluation strategy

As defined in section 4, the objective is to compare the performance of metaheuristic

approaches with that of random search, to find out whether using a strategic selection

of combinations, by using previously found candidate can provide better combinations

than that of random search. The measure for the performance on regression, is the

RMSE loss. Due to the random element in the optimisation processes, the optimisation

runs were performed three times each to obtain the average improvement and thus a

better estimate of the true performance. The comparisons were performed between

different optimisation approaches, i.e., GA and PSO, but also the machine learner. A

closer look was taken at the rate of improvement by looking at the average

improvement and standard deviation from one generation to the next. Another

measure used to compare the experiments was the best performance so far per run, and

the average best so far per generation.

RESULTS AND OBSERVATIONS

41

Chapter 7 - Results and Observations

In this section the results and predictive performance of the various ML models will be

discussed, after model selection by optimising the hyperparameters using the Genetic

Algorithm and particle swarm optimisation.

7.1 The Results

In the first experiment using the RNN model and performing hyperparameter

optimisation using the genetic algorithm and random search optimiser using both 2018

cohort patients. The experiment included the use of patient 540, CGM only dataset, and

consisted of a population size of 12 for the genetic algorithm. a trend is observed for

the genetic algorithm were from the first generation as show in table 7.1.3, the best

fitness is RMSE (mg/dL) =70.45 and the last generation the best fitness was found to be

RMSE (mg/dL) =70.45. The average best over the generations for the GA shows that

given the generations it could improve by using previously known hyperparameter

combinations. The average best for the random search does not show any correlation

with the number of generations. It is noted that for the random search the average best

can vary in both directions as shown in figure 7.1.1 where in the first generation the

average best is the lowest, whilst the highest in generation 4. The best fitness value

achieved from this experiment is RMSE=66.58, from the GA Optimiser. This experiment

was repeated for patients 544, 552.

RESULTS AND OBSERVATIONS

42

Figure 7.1.1 Line chart showing the average best fitness for both the genetic algorithm (blue), and the

random search optimiser (red) for patient 540 using the RNN with PH=30min.

On average the Genetic algorithm takes longer to converge then the random search, as

shown in figure 7.1.2, The genetic algorithm delivered the best result in the

experimentation, however the random search gave satisfactory results given that it

does not have a strategy for tuning the hyperparameters. The runs show that given

enough generations the GA can provide better hypermeter, i.e., improve the predictive

performance as shown in figure 7.1.3 where the average best so far is better for the GA

when compared with the random search.

Figure 7.1.2 Chart depicting Best So Far Per Run over the generations for patient 540 using the RNN with

PH=30min.

RESULTS AND OBSERVATIONS

43

Figure 7.1.3 Line chart showing the average best so far for each of the hyperparameter optimisers over the

generations.

RESULTS AND OBSERVATIONS

1

 RNN using Genetic Algorithm

Patient Run 1 Run 2 Run 3 Overall Runs

 BSF BF Average BSF BF Average BSF BF Average

Average

best

SD of

Average

BF

Global

BF

Average

BSF

540 Gen 1 76.01 76.01 126.72 69.44 69.44 82.16 70.45 70.45 95.16 71.97 3.54 69.44 71.97

 Gen 2 71.86 71.86 104.2158333 69.41 69.41 77.23 70.23 70.23 82.58 70.50 1.25 69.41 70.50

 Gen 3 70.89 70.89 80.03 69.31 69.31 70.63 69.59 69.59 71.50 69.93 0.84 69.31 69.93

 Gen 4 69.72 69.72 84.31 69.31 69.31 73.79 66.58 66.58 70.19 68.54 1.71 66.58 68.54

 Gen 5 69.72 69.72 73.67 69.31 69.31 73.79 66.58 66.58 74.72 68.54 1.71 66.58 68.54

 Gen 6 69.72 69.72 76.29 69.31 69.31 69.99 66.58 66.58 73.05 68.54 1.71 66.58 68.54

 Gen 7 69.30 69.30 69.92 69.31 69.31 74.15 66.58 66.58 75.47 68.40 1.57 66.58 68.40

 Gen 8 69.30 69.30 78.03 69.31 69.31 76.28 66.58 66.58 70.70 68.40 1.57 66.58 68.40

 RNN using Random Search Optimiser

 Gen 1 71.05 71.05 92.90 67.83 67.83 90.8025 69.48 69.48 111.51 69.45 1.61 67.83 69.45

 Gen 2 68.63 68.63 92.41 67.83 70.04 112.47 69.48 70.61 97.04 69.76 1.02 68.63 68.65

 Gen 3 68.63 69.39 100.04 67.83 70.83 101.80 69.48 69.54 116.90 69.92 0.79 69.39 68.65

 Gen 4 68.63 72.29 94.69 67.83 81.93 113.28 69.28 69.28 105.76 74.50 6.61 69.28 68.58

 Gen 5 68.63 70.39 109.43 67.83 70.03 106.99 69.28 69.93 110.39 70.12 0.24 69.93 68.58

 Gen 6 68.63 69.92 76.31 67.83 69.75 107.63 69.28 73.65 94.60 71.11 2.20 69.75 68.58

 Gen 7 68.63 78.20 112.01 67.83 70.18 79.55 69.25 69.25 102.94 72.54 4.92 69.25 68.57

 Gen 8 68.63 71.42 91.49 67.83 70.32 76.63 69.25 69.79 94.83 70.51 0.83 69.79 68.57

Table 7.1.1 Results of the first experiment, where the RNN was tuned using the genetic algorithm and random search optimiser for 3 runs on patient 540 for PH=30.

BSF=Best So Far, BF=Best Fitness, SD=Standard Deviation

RESULTS AND OBSERVATIONS

1

The second experiment was run again on the patient 563, the results (refer to table 7.1.2)

confirm those of experiment one where the average best is better for the genetic

algorithm as shown in figure 7.1.4. In comparison to the previous experiment, the best

so far per run of the GA is comparable with that of the random search (refer to figure

7.1.5). On the other hand, the average best so far over the generations is better for the

GA after three generations.

Figure 7.1.4 Line chart showing the average best for each of the hyperparameter optimisers per generation.

Figure 7.1.5 Line chart showing Best So Far per run for each of the hyperparameter optimisers. In this chart

the random search performs similarly to the genetic algorithm, with the third run of the GA showing

significant improvement from the rest of the rest.

RESULTS AND OBSERVATIONS

2

Figure 7.1.6 Line chart of average Best So Far over the generations, where the genetic algorithm shows

improvement after several generations.

RESULTS AND OBSERVATIONS

1

Table 7.1.2 Results of the second experiment, where the RNN was tuned using the genetic algorithm and random search optimiser for 3 runs on patient 563 for PH=30.

BSF=Best So Far, BF=Best Fitness, SD=Standard Deviation

 RNN using Genetic Algorithm

Patient Run 1 Run 2 Run 3 Overall Runs

 BSF BF Average BSF BF Average BSF BF Average Average BF SD of Average BF Global best Average BSF

563 Gen 1 49.92 49.92 87.44 49.78 49.78 72.24 50.00 50.00 100.59 49.90 0.07 49.88 49.90

 Gen 2 49.92 49.92 59.99 49.77 49.77 61.86 50.00 50.00 65.50 49.90 0.27 50.00 49.90

 Gen 3 49.91 49.91 59.97 49.77 50.02 90.00 50.00 50.00 52.56 49.98 0.09 49.85 49.89

 Gen 4 49.91 49.91 49.92 49.77 49.77 55.35 47.99 47.99 52.55 49.22 1.10 47.99 49.22

 Gen 5 49.91 49.91 53.53 49.77 49.77 50.13 47.99 47.99 50.18 49.22 1.07 47.99 49.22

 Gen 6 49.91 49.91 51.51 49.76 49.76 52.71 47.99 47.99 53.97 49.22 1.73 47.99 49.22

 Gen 7 49.91 49.91 50.27 49.76 49.76 52.20 47.99 47.99 50.25 49.22 1.19 47.99 49.22

 Gen 8 49.91 49.91 55.37 49.76 49.76 59.37 47.99 47.99 54.45 49.22 14.93 47.99 49.22

 RNN using Random Search Optimiser

 Gen 1 50.01 50.01 82.18 49.88 49.88 87.86 49.83 49.83 91.40 49.91 0.09 49.83 49.91

 Gen 2 50.01 50.54 82.49 49.88 50.27 65.72 49.83 81.32 118.37 60.71 17.85 50.27 49.91

 Gen 3 49.85 49.85 73.95 49.88 50.02 90.00 49.83 50.08 76.92 49.98 0.12 49.85 49.85

 Gen 4 49.85 49.85 49.97 49.88 49.93 77.94 49.83 49.92 84.74 49.90 0.04 49.85 49.85

 Gen 5 49.85 49.85 49.96 49.84 49.84 95.54 49.83 67.26 104.90 55.65 10.05 49.84 49.84

 Gen 6 49.85 49.85 49.95 49.84 51.45 70.21 49.83 52.42 78.62 51.24 1.30 49.85 49.84

 Gen 7 49.85 50.11 79.43 49.84 50.00 73.16 49.83 69.25 102.94 56.45 11.08 50.00 49.84

 Gen 8 49.85 53.13 85.79 49.84 76.03 111.01 49.83 51.24 92.90 60.13 13.80 51.24 49.84

RESULTS AND OBSERVATIONS

1

In the third experiment using the XGBoost machine learner, a comparison is made

between the random search optimiser and the genetic algorithm, on thepatient 559 from

the 2018 cohort with PH=30. Using the genetic algorithm for hyperparameter

optimisation, the experiment was run for three runs, each with an initial population of

12 for eight generations. The results show (refer to table 7.1.3) that even though random

search finds hyperparameters that give satisfactory results, there is no noticeable

improvement/trend as shown in figure 7.1.7 when using the average best RMSE

(mg/dL). For the best so far RMSE metric for the final generation was achieved by the

third run of the GA with the second best being the first run of the ransom search. The

average best so far (Average BSF) for the random search was comparable with that of

the GA (as shown in figure 7.1.9), however the GA provided slightly better results,

similar to the previous experiments.

RESULTS AND OBSERVATIONS

2

Table 7.1.3 Results of the third experiment showing a comparison of predictive performance of the XGBoost after hyperparameter optimisation using the Genetic algorithm

and Random search on the ohioT1DM dataset (CGM only) using patient 559 for PH=30min. *BSF=Best So Far, BF=Best Fitness, SD=Standard Deviation

 XGBoost using Genetic Algorithm

Patient Run 1 Run 2 Run 3 Overall Runs

 BSF BF Average BSF BF Average BSF BF Average Average best SD of Average BF Global best Average BSF

559 Gen 0 20.96 20.96 22.59 21.75 21.75 22.95 20.79 20.79 22.88 21.17 0.51 20.79 21.17

 Gen 1 20.90 20.90 21.86 21.39 21.39 22.32 20.79 20.79 22.02 21.03 0.32 20.79 21.03

 Gen 2 20.90 20.90 21.54 21.39 21.39 22.05 20.79 20.56 21.22 20.95 0.42 20.56 21.03

 Gen 3 20.90 20.88 21.27 21.39 21.39 21.85 20.79 20.56 21.28 20.94 0.42 20.56 21.03

 Gen 4 20.90 20.88 21.16 21.39 21.39 21.61 20.79 20.46 23.14 20.91 0.47 20.46 21.03

 Gen 5 20.90 20.78 20.96 21.39 21.22 21.56 20.79 20.46 21.23 20.82 0.38 20.46 21.03

 Gen 6 20.73 20.73 20.94 21.22 21.22 21.60 20.38 20.38 20.71 20.78 0.42 20.38 20.78

 Gen 7 20.73 20.73 20.97 21.14 21.14 21.34 20.38 20.38 20.52 20.75 0.38 20.38 20.75

 XGBoost using Random Search

 Gen 0 21.07 21.07 22.55 21.59 21.59 28.75 21.17 21.17 21.87 21.28 0.28 21.07 21.28

 Gen 1 21.07 21.26 22.86 21.59 22.35 23.46 21.17 22.49 22.63 22.03 0.67 21.26 21.28

 Gen 2 21.07 22.50 23.04 21.59 21.92 22.55 21.17 22.81 22.91 22.41 0.45 21.92 21.28

 Gen 3 21.07 21.24 22.19 21.38 21.38 27.99 21.17 23.01 23.09 21.88 0.98 21.24 21.21

 Gen 4 21.07 21.49 25.25 21.38 23.07 25.82 21.17 23.18 23.25 22.58 0.95 21.49 21.21

 Gen 5 20.54 20.54 22.44 21.38 21.58 22.50 21.17 23.38 23.46 21.83 1.44 20.54 21.03

 Gen 6 20.54 22.16 23.26 20.85 20.85 30.97 21.17 23.65 23.94 22.22 1.40 20.85 20.85

 Gen 7 20.54 21.38 22.69 20.85 22.03 23.69 21.17 24.45 42.81 22.62 1.62 21.38 20.85

RESULTS AND OBSERVATIONS

3

Figure 7.1.7 Line chart showing average best RMSE (mg/dL) for the genetic algorithm and random search

for every generation. (Population size = 12)

Figure 7.1.8 Line chart showing the best so far RMSE (mg/dL) for the genetic algorithm and random search

for every generation. (Population size = 12)

RESULTS AND OBSERVATIONS

4

Figure 7.1.9 Line chart showing the average best so far RMSE (mg/dL) for the genetic algorithm and

random search for every generation. (Population size = 12)

Further analysis could be carried out with additional variations of such experiments,

e.g., using a different prediction horizon.

7.2 Evaluation of Results

The results give an indication that in the context of blood glucose prediction using the

OhioT1DM dataset, the genetic algorithm gives slightly better results than the random

search optimiser. It is possible that the degree of improvement achieved by using the

genetic algorithm is affected by the specific configuration of the GA, i.e., the cross-over

method, and the mutation process and amount. Furthermore, it is important to note

that in order to perform the experimentation within a reasonable time, the search space

for each of the machine learners was restricted, e.g. in the context of the RNN model,

in the initial experimentation it was observed that a small hidden layer size can

negatively affect the predictive performance, however with the benefit of reducing the

training time. The initial population size set may also limit the predictive performance

improvement when using the metaheuristic optimisers as the algorithm make use of

previously found configurations with the objective being to exploit characteristic which

can provide a better result. Additionally, restricting the number of epochs may also

have a negative affect on the predictive performance for a particular hyperparameter

configuration. The lack of significant improvement by the hyperparameter

RESULTS AND OBSERVATIONS

5

optimisation process may be attributed to the limits in the relationship and/or quality

of the data that the machine learner is evaluating. In section 5.3.3, a pre-processing step

was made with the aim of improving the quality of the data by removing and/or filling

the missing values to mitigate the aforementioned issue.

LIMITATIONS, FUTURE WORK AND CONCLUSIONS

6

Chapter 8 - Limitations, Future Work

and Conclusions

8.1 Limitations of the Study

In this paper two metaheuristic algorithms were studied, both of which are

evolutionary methods. Due to the vast number of combinations of tests, given the

available resources it was not feasible to use other type of metaheuristic approaches for

the optimisation of hyperparameters.

8.2 Future Work

For the implementation of the metaheuristic optimiser in this paper, the parameters

that govern the way the algorithm worked were set during the initial testing and were

used throughout the experimentation. Hence, possible future work is exploring the use

of adaptive metaheuristic optimisers and the tuning of parameters that impact the

exploration and exploitation aspect of the metaheuristic algorithms.

Due to the prevalence of Type-2 diabetes in Malta, techniques implemented in this

paper may be adapted for blood glucose levels prediction using physiological time

series data obtained from Maltese Type-2 diabetes patients, especially for senior

patients [49].

8.3 Conclusion

In this study the use of metaheuristic approaches to optimise machine learner

performance on blood glucose levels prediction together with the use of other

physiological data and alternative means to increase computational power were

explored. The experiments indicate that a metaheuristic approach to hyperparameter

optimisation in this context may produce better results than random search given

LIMITATIONS, FUTURE WORK AND CONCLUSIONS

7

sufficient generations. It is noted that using such techniques significantly increases the

computational cost, as the models must be retrained multiple times with different

configurations.

8

Bibliography

[1] N. Stevanovic, Guyton and Hall Textbook of Medical Physiology - 12th-Ed. 2019.

[2] “IDF Type 1 Diabetes,” [Online]. Available:

https://www.idf.org/aboutdiabetes/type-1-diabetes.html.

[3] “IDF DIABETES ATLAS Ninth edition 2019.” https://diabetesatlas.org/en/.

[4] O. D. Anderson and C. Chatfield, The Analysis of Time Series: Theory and Practice.,

vol. 25, no. 4. 1976.

[5] I. A. Iwok and A. S. Okpe, “A Comparative Study between Univariate and

Multivariate Linear Stationary Time Series Models,” Am. J. Math. Stat., vol. 6, no.

5, pp. 203–212, 2016, doi: 10.5923/j.ajms.20160605.02.

[6] M. A. Din, “ARIMA by Box Jenkins Methodology for Estimation and Forecasting

Models in Higher Education,” ATINER’s Conf. Pap. Ser., no. March, pp. 3–14,

2015.

[7] Robin John Hyndman and George Athanasopoulos, “ARIMA models,” in

Forecasting: Principles and Practice, 2018, pp. 223–243.

[8] Y. Xia and M. S. Kamel, “A generalized least absolute deviation method for

parameter estimation of autoregressive signals,” IEEE Trans. Neural Networks,

vol. 19, no. 1, pp. 107–118, 2008, doi: 10.1109/TNN.2007.902962.

[9] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow : concepts,

tools, and techniques to build intelligent systems. 2017.

[10] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput.,

vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.

[11] S. Chang et al., “Dilated recurrent neural networks,” arXiv, no. Nips, pp. 1–11,

2017.

[12] A. van den Oord et al., “WaveNet: A Generative Model for Raw Audio,” pp. 1–

15, 2016, [Online]. Available: http://arxiv.org/abs/1609.03499.

[13] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proc. ACM

9

SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 785–794, 2016,

doi: 10.1145/2939672.2939785.

[14] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On

Empirical Comparisons of Optimizers for Deep Learning.” [Online]. Available:

https://www.tensorflow.org/.

[15] C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview

and Conceptual Comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308,

Sep. 2003, doi: 10.1145/937503.937505.

[16] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A Survey of Optimization Methods from a

Machine Learning Perspective,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3668–3681,

2020, doi: 10.1109/TCYB.2019.2950779.

[17] S. Ruder, “An overview of gradient descent optimization algorithms,” pp. 1–14,

2016, [Online]. Available: http://arxiv.org/abs/1609.04747.

[18] H. R. Maier, S. Razavi, Z. Kapelan, L. S. Matott, J. Kasprzyk, and B. A. Tolson,

“Introductory overview: Optimization using evolutionary algorithms and other

metaheuristics,” Environ. Model. Softw., vol. 114, no. November 2018, pp. 195–

213, 2019, doi: 10.1016/j.envsoft.2018.11.018.

[19] K. Hussain, M. Najib, M. Salleh, · Shi Cheng, and · Yuhui Shi, “Metaheuristic

research: a comprehensive survey,” Artif. Intell. Rev., vol. 52, 2018, doi:

10.1007/s10462-017-9605-z.

[20] D. Devikanniga, K. Vetrivel, and N. Badrinath, “Review of meta-heuristic

optimization based artificial neural networks and its applications,” J. Phys. Conf.

Ser., vol. 1362, no. 1, 2019, doi: 10.1088/1742-6596/1362/1/012074.

[21] R. E. James Kennedy, “Particle Swarm Optimisation,” Stud. Comput. Intell., vol.

927, pp. 5–13, 1995, doi: 10.1007/978-3-030-61111-8_2.

[22] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,”

Proc. 1999 Congr. Evol. Comput. CEC 1999, vol. 3, pp. 1945–1950, 1999, doi:

10.1109/CEC.1999.785511.

[23] S. Kiranyaz, “Particle swarm optimization,” Adapt. Learn. Optim., vol. 15, no. May

10

2011, pp. 45–82, 2014, doi: 10.1007/978-3-642-37846-1_3.

[24] I. Sousa-Ferreira and D. Sousa, “A review of velocity-type PSO variants,” J.

Algorithm. Comput. Technol., vol. 11, no. 1, pp. 23–30, 2017, doi:

10.1177/1748301816665021.

[25] C. Midroni et al., “Genetic algorithms: a survey,” CEUR Workshop Proc., vol. 2148,

no. 6, pp. 17–26, Jun. 2018, doi: 10.1109/2.294849.

[26] S. Landset et al., “A survey on distributed machine learning,” arXiv, vol. 2, no. 1,

pp. 1–36, 2019, doi: 10.1186/s40537-015-0032-1.

[27] T. Sterling, D. Savarese, D. J. Becker, J. Dorband, U. Ranawake, and C. V Packer,

“BEOWULF: A Parallel Workstation for Scientific Computation,” 1995.

[28] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S.

Rellermeyer, “A survey on distributed machine learning,” arXiv, 2019.

[29] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey of open

source tools for machine learning with big data in the Hadoop ecosystem,” J. Big

Data, vol. 2, no. 1, pp. 1–36, 2015, doi: 10.1186/s40537-015-0032-1.

[30] K. Li, J. Daniels, C. Liu, P. Herrero, and P. Georgiou, “Convolutional recurrent

neural networks for glucose prediction,” arXiv, vol. 24, no. 2, pp. 603–613, 2018.

[31] S. Mirshekarian, R. Bunescu, C. Marling, and F. Schwartz, “Using LSTMs to learn

physiological models of blood glucose behavior,” Proc. Annu. Int. Conf. IEEE Eng.

Med. Biol. Soc. EMBS, pp. 2887–2891, 2017, doi: 10.1109/EMBC.2017.8037460.

[32] H. Khadem, H. Nemat, J. Elliott, and M. Benaissa, “Multi-Lag Stacking for Blood

Glucose Level Prediction,” CEUR Workshop Proc., vol. 2675, pp. 146–150, 2020.

[33] A. Mohebbi et al., “Short term blood glucose prediction based on continuous

glucose monitoring data,” arXiv, pp. 5140–5145, 2020.

[34] J. Chen, K. Li, P. Herrero, T. Zhu, and P. Georgiou, “Dilated recurrent neural

network for short-time prediction of glucose concentration,” CEUR Workshop

Proc., vol. 2148, pp. 69–73, 2018.

[35] C. Marling and R. Bunescu, “The ohioT1DM dataset for blood glucose level

11

prediction: Update 2020,” CEUR Workshop Proc., vol. 2675, pp. 71–74, 2020.

[36] D. A. Cilia, “A Data Analytic and Machine Learning Approach to Diabetes

Monitoring,” no. September, 2020.

[37] T. Zhu, K. Li, P. Herrero, J. Chen, and P. Georgiou, “A deep learning algorithm

for personalized blood glucose prediction,” CEUR Workshop Proc., vol. 2148, pp.

64–78, 2018.

[38] P. B. Computer, I. Speller, S. Kundu, and S. Ari, “Glunet : A Deep Learning

Framework for,” vol. 2, no. 1, pp. 86–93, 2020.

[39] A. Bhimireddy, P. Sinha, B. Oluwalade, J. W. Gichoya, and S. Purkayastha,

“Blood glucose level prediction as time-series modeling using sequence-to-

sequence neural networks,” CEUR Workshop Proc., vol. 2675, pp. 125–130, 2020.

[40] K. Gu, R. Dang, and T. Prioleau, “Neural Physiological Model: A Simple Module

for Blood Glucose Prediction,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.

EMBS, vol. 2020-July, pp. 5476–5481, 2020, doi:

10.1109/EMBC44109.2020.9176004.

[41] A. Guemes et al., “Predicting Quality of Overnight Glycaemic Control in Type 1

Diabetes Using Binary Classifiers,” IEEE J. Biomed. Heal. Informatics, vol. 24, no.

5, pp. 1439–1446, 2020, doi: 10.1109/JBHI.2019.2938305.

[42] X. Li et al., “Accurate prediction of continuous blood glucose based on support

vector regression and differential evolution algorithm,” Swarm Evol. Comput.,

vol. 38, no. 2, pp. 135–140, 2018, doi: 10.1016/j.bbe.2018.02.005.

[43] W. Wang, M. Tong, and M. Yu, “Blood Glucose Prediction with VMD and LSTM

Optimized by Improved Particle Swarm Optimization,” IEEE Access, vol. 8, pp.

217908–217916, 2020, doi: 10.1109/ACCESS.2020.3041355.

[44] J. Xie and Q. Wang, “Benchmarking Machine Learning Algorithms on Blood

Glucose Prediction for Type i Diabetes in Comparison with Classical Time-Series

Models,” IEEE Trans. Biomed. Eng., vol. 67, no. 11, pp. 3101–3124, 2020, doi:

10.1109/TBME.2020.2975959.

[45] J. Martinsson, A. Schliep, B. Eliasson, C. Meijner, S. Persson, and O. Mogren,

12

“Automatic blood glucose prediction with confidence using recurrent neural

networks,” CEUR Workshop Proc., vol. 2148, pp. 64–68, 2018.

[46] L. James V. Miranda, “PySwarms: a research toolkit for Particle Swarm

Optimization in Python,” J. Open Source Softw., vol. 3, no. 21, p. 433, 2018, doi:

10.21105/joss.00433.

[47] J. L. Parkes and D. Ph, “Technical aspects of the Parkes error grid,” vol. 7, no. 5,

pp. 1275–1281, 2013.

[48] J. L. Parkes, S. L. Slatin, S. Pardo, and B. H. Ginsberg, “A new consensus error

grid to evaluate the clinical significance of inaccuracies in the measurement of

blood glucose,” Diabetes Care, vol. 23, no. 8, pp. 1143–1148, 2000, doi:

10.2337/diacare.23.8.1143.

[49] S. Cuschieri, “The diabetes epidemic in Malta,” South East. Eur. J. Public Heal.,

vol. 13, no. February, pp. 1–10, 2020, doi: 10.4119/seejph-3322.

